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Abstract
The cat-eyes steady-state solution in the framework of hydrodynamics
describing an infinite row of identical vortices is extended to the
magnetohydrodynamic equilibrium equation with incompressible flow of
arbitrary direction. The extended solution covers a variety of equilibria
including one- and two-dimensional generalized force-free and Harris-sheet
configurations which are preferable to those usually employed as initial states
in reconnection studies. Although for the extended cat-eyes equilibrium the
vortex shape is not affected by the magnetic field, the flow in conjunction with
the equilibrium nonlinearity has a strong impact on isobaric surfaces by forming
pressure islands located within the cat-eyes vortices. More importantly, a
magnetic-field-aligned flow of experimental fusion relevance and the flow shear
have significant stabilizing effects in the region of the pressure islands. The
stable region is enhanced by an external axial (‘toroidal’) magnetic field.

PACS numbers: 52.30.Cv, 52.55.−s

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Sheared flows influence the equilibrium and stability properties of magnetically confined
plasmas and result in transitions to improved modes either in the edge region (low-to-high-
mode transition) or in the central region (internal transport barriers) of fusion devices. Typical
experimental velocities correspond to Alfvén Mach numbers of the order of 0.01; for example,
in JET [1] and ASDEX Upgrade [2] discharges with nearly common values of 102 km s−1 for
toroidal velocity (vt ) and 1019 m−3 for averaged line density, the respective toroidal Alfvén
Mach numbers are 0.018 and 0.025 (the toroidal magnetic field (Bt ) is 3.4 T for JET and
2.5 T for ASDEX Upgrade). Also, the poloidal Alfvén Mach numbers are of the same order
of magnitude as the toroidal ones because Bp ∼ 10−1Bt and vp ∼ 10−1vt .
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Figure 1. u-lines of the magnetohydrodynamic cat-eyes solution (15) for ε = 0.2 and β = 0.02
as intersections of the magnetic surfaces with the poloidal plane.

As concerns equilibrium, the convective velocity term in the momentum equation makes
the isobaric surfaces deviate from magnetic surfaces, unlike the case of quasistatic steady
states3, thus potentially affecting stability. For symmetric two-dimensional equilibria, this
effect has been examined on the basis of analytic solutions to linearized forms of generalized
Grad–Shafranov equations, e.g. [3]. For flows of fusion concern, i.e. for Alfvén Mach numbers
of the order of 0.01, this deviation is small and consequently isobaric and magnetic surfaces
have the same topology.

The aim of the present study is to examine the impact of flow in conjunction with
nonlinearity to certain equilibrium and stability properties in relation to the departure of the
isobaric surfaces from magnetic ones. The motivation was a solution of a nonlinear form
of the hydrodynamic equation describing the steady motion of an inviscid incompressible
fluid in two-dimensional plane geometry, known as ‘cat eyes’, which represents an infinite
row of identical vortices ([4, 5]; see also figure 1). This solution is extended here to
the magnetohydrodynamic (MHD) equilibrium equation with incompressible flow. Then,
the stability of the extended solution is examined by means of a recent sufficient condition
[6]. The major conclusion is that owing to the nonlinearity of the equilibrium, the flow and
flow shear drastically affect the pressure surfaces and have significant stabilizing effects in the
region of modified pressure.

The MHD equilibrium equations with incompressible flow for translationally symmetric
plasmas are reviewed in section 2. In section 3, a solution of the pertinent generalized
Grad–Shafranov equation describing a whole set of equilibria is constructed as an extension
of the cat-eyes solution. Then for parallel flows and constant density the stability of the
solution obtained is studied in section 4. Section 5 recapitulates the study and summarizes the
conclusions.

3 The term quasistatic means that the velocity term is neglected in the momentum equation but is kept in Ohm’s law.
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2. Review of the equilibrium equations

The MHD equilibrium states of a translationally symmetric magnetized plasma with
incompressible flows satisfy the generalized Grad–Shafranov equation [7],

(1 − M2)∇2ψ − 1

2
(M2)′|∇ψ |2 +

(
μ0Ps +

B2
z

2

)′
= 0 (1)

and the Bernoulli relation for the pressure

P = Ps(ψ) − 1

2μ0
M2|∇ψ |2. (2)

Here, SI units are employed, ψ(x, y) is the poloidal magnetic flux function which labels the
magnetic surfaces (see (3) below) with (x, y, z) Cartesian coordinates so that z corresponds
to the axis of symmetry and (x, y) are associated with the poloidal plane; M(ψ) is the Mach
function of the poloidal velocity with respect to the poloidal-magnetic-field Alfvén velocity;
Bz is the axial magnetic field; for vanishing flow the surface function Ps(ψ) coincides with the
pressure; the prime denotes a derivative with respect to ψ . The surface quantities M(ψ),Bz(ψ)

and Ps(ψ) are free functions for each choice of which (1) is fully determined and can be solved
whence the boundary condition for ψ is given. Also, to completely determine the equilibrium,
three additional surface functions are needed, i.e., the density, �(ψ), the electrostatic potential,
�(ψ) and the axial velocity component vz(ψ). Derivation of (1) and (2) is based on the
following two steps. First, on account of symmetry and Ampere’s law the divergence free
fields, i.e. the magnetic field, current density and momentum density, are expressed in terms
of the scalars ψ,Bz, vz and F as

B = Bzez + ez × ∇ψ, (3)

μ0j = ∇2ψez − ez × ∇Bz, (4)

�v = �vz + ez × ∇F. (5)

In fact, as (3) indicates, −ψ is the z-component of the vector potential. Second, the components
of the momentum equation [�(v · ∇)v = j × B − ∇P ] and Ohm’s law (−∇� + v × B = 0)

along ez, B and ∇ψ , with the aid of continuity equation [∇ · (�v) = 0] and incompressibility,
yield four first integrals in terms of the surface quantities Bz(ψ), vz(ψ), �(ψ), F ′(ψ) and
�′(ψ) together with (1) and (2) (with M2(ψ) = μ0(F

′)2/�). Note that vz does not appear
explicitly in (1). Details can be found in [7, 8].

Equation (1) can be simplified by the transformation [9, 10]

u(ψ) =
∫ ψ

0
[1 − M2(g)]1/2 dg, (6)

which reduces (1) to

∇2u +
d

du

(
μ0Ps +

B2
z

2

)
= 0. (7)

Also, (2) is put in the form

P = Ps(u) − M2

2μ0(1 − M2)
|∇u|2. (8)

Note that (7) free of a quadratic term as |∇u|2 is identical in form to the quasistatic MHD
equilibrium equation as well as to the equation governing the steady motion of an inviscid
incompressible fluid in the framework of hydrodynamics. Transformation (6) does not affect
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the magnetic surfaces, it just relabels them. Also, once a solution to (7) is found, the
equilibrium can be completely constructed in the u-space; in particular, the magnetic field,
current density, velocity and electric field can be determined by the relations:

B = Bzez + (1 − M2)−1/2ez × ∇u, (9)

μ0j =
[
(1 − M2)−1/2∇2u +

1

2

dM2

du
(1 − M2)−3/2 |∇u|2

]
ez − dBz

du
ez × ∇u, (10)

v = M√
�

B − (1 − M2)−1/2 d�

du
ez (11)

E = −d�

du
∇u. (12)

Analytic solutions to linearized forms of (7) have been constructed for quasistatic [11, 12] and
stationary equilibria [8]. As already mentioned in section 1, for flows of experimental fusion
relevance (|M| ≈ 0.01) the departure of the isobaric surfaces from magnetic ones is small
(see, for example, figure 2 of [3]), so that the topology of these two families of surfaces is
identical.

3. Magnetohydrodynamic ‘cat eyes’ with flow

The present section aims to extend the hydrodynamic cat-eyes solution to (7) and examines
certain equilibrium characteristics in connection with the impact of the flow together with
nonlinearity. For convenience we introduce dimensionless quantities: x̃ = x/L, ỹ =
y/L, ũ = u/(Bz0L), �̃ = �/�0, P̃ = P

/(
B2

z0

/
μ0

)
, B̃ = B/Bz0, j̃ = j/(Bz0/(μ0L)), ṽ =

v/vA0, where vA0 = Bz0/
√

μ0�0 , and Ẽ = E/(Bz0vA0); here, L,Bz0 and �0 are reference
quantities to be defined later. Equations (7) and (8) hold in identical forms for the tilted
quantities and will be further employed as dimensionless by dropping for simplicity the tilde.
To construct a cat-eyes solution we make the ansatz

d(Ps + B2
z /2)

du
= (ε2 − 1) exp(−2u), (13)

by which (7) reduces to the following form of Liouville’ s equation:

∇2u = (1 − ε2) exp(−2u). (14)

Equation (14) admits the solution

u = ln[cosh(y) − ε cos(x)], (15)

the characteristic lines of which are shown in figure 1. The parameter ε determines the vortex
size; for ε = 1 the solution represents an infinite row of point vortices and for ε = 0 it becomes
one dimensional: u = ln cosh y. It is noted here that though (15) is singular in the limit of
y → ∞, all the local equilibrium quantities are everywhere regular. Equation (13) can be
solved for Ps(u) + B2

z /2 to yield

Ps +
B2

z

2
= 1 − ε2

2
exp(−2u) + c0 = 1 − ε2

2 (cosh y − ε cos x)2 + c0, (16)

where c0 is a constant. The equilibria described by (15) and (16) have the following
characteristics.
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Figure 2. Profile of the quasistatic pressure function Ps (equation (17) for βf = 0) along the y-axis.

(i) The vortices are by construction of solution (15) identical to the respective hydrodynamic
vortices, namely, the magnetic field does not affect the vortex shape. This is a property of
the extended cat-eyes solution; in general, the magnetic field can have an impact on the
velocity and vice versa.

(ii) Since magnetic field and current density lie on the velocity or magnetic surfaces, the
vortices can be regarded as magnetic islands with plasma flow. Quasistatic MHD and
hydrodynamic cat eyes can be recovered as particular cases. Also, it may be noted that for
flows non-parallel to the magnetic field, the electric field is perpendicular to the magnetic
surfaces (equation (12)).

(iii) In fact, (15) and (16) hold for a rather large set of equilibria because the functions
ρ(u),�(u),M(u) and one out of Bz(u) and Ps(u) remain free.

We will further consider a subset of steady sates by assigning the free functions Ps, Bz

and M as

Ps(u) = β
1 − ε2

2
exp(−2u) +

βf

2
, (17)

B2
z (u) = (1 − β)(1 − ε2) exp(−2u) + B2

z0, (18)

M = M0 exp(−2nu) = M0 (cosh y − ε cos x)−2n , n > 0. (19)

Choice (19) yields a peaked M2-profile along y with |M0| being the maximum absolute value
at x = y = 0. The profile becomes steeper as n takes larger positive values, thus increasing
the shear of M in relation to the velocity shear. Henceforth, profiles will refer to the y-axis.
The parameter Bz0 represents the external axial magnetic field,

β = Ps(ε = y = 0)

B2
z0

/
2

and βf = Ps0
/(

B2
z0

/
2
)
, where Ps0 = const. Note that β has been introduced in (17) and

(18) in such a way that (16) is automatically satisfied. The other parameter βf in (17) yields
force-free quasistatic equilibria when β = 0. For β 	= 0, we set βf = 0 in order that Ps

vanishes for y → ∞; thus, only one of the parameters β and βf is finite in connection with
peaked and flat Ps-profiles, respectively. A peaked Ps-profile is shown in figure 2. For flat
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Figure 3. Pressure islands in connection with (8) (a) and (20) (b). The curves represent pressure
lines on the poloidal plane. In the absence of flow the lines of (a) coincide with the u-lines of
figure 1 while the equilibrium of (b) becomes force free.

Ps-profiles, to guarantee positiveness of the pressure for βf � 0, (8) is modified to

P = βf

2
− M2

2(1 − M2)
|∇u|2 +

M2
0

2
(
1 − M2

0

) . (20)

The parameters M0 and n are free together with L, �0, ε, Bz0, and β or βf . It is recalled that
dimensionless quantities are employed and therefore Bz0 = 1. Also, the reference quantities
L and �0, not appearing explicitly in the equations, can arbitrarily be defined as the vortex
length (along the x-axis) and the density at x = y = 0. Because of the many free parameters,
there is a variety of steady states including extensions of equilibria employed as initial states in
reconnection studies (see for example [13]). An example concerns the one-dimensional, force
free quasistatic equilibrium recovered for β = ε = 0. In the presence of flow and ε 	= 0 this
equilibrium becomes two dimensional with hollow pressure profile (equation (20); see also
figure 4(b)). Also, in this case both current density and velocity have all three components
finite. Another example for β = 1 is an equilibrium with Bz = Bz0, axial current density
and three-component velocity. For vanishing flow and ε = 0 this reduces to the Harris sheet
equilibrium [14].

We have examined the pressure using Mathematica 6 within broad regions of the free
parameters, i.e., 0 � ε � 1, 0 � β � 0.9, 0 � M0 � 0.9 and 0 � n � 15. Note that,
because of the flow term in (8) the pressure for certain parametric values can become negative.
Thus, particular care has been taken in getting physically acceptable pressure everywhere.
For two-dimensional equilibria, it turns out that the flow has a strong impact on the isobaric
surfaces by creating ‘pressure islands’ within the cat eyes. This is shown in figure 3. Also
P-profiles are presented in figure 4. As can be seen in figure 3, pressure islands appear even
for parametric values of experimental fusion concern (β = 0.02,M0 = 0.02). Since for linear
equilibria the flow impact on the pressure is weak, it is the nonlinearity here which should play
an important role. Also, as will be discussed in section 3, the formation of pressure islands
may be related to appreciable stabilizing effects of the flow.
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Figure 4. Pressure profiles along the y-axis respective to the pressure-island configurations 3(a)
and 3(b). For vanishing flow the profiles (a) and (b) become peaked and flat, respectively.

4. Stabilizing effects of the flow

The stability of the equilibria described by (15) and (17)–(19) is now examined by applying
a recent sufficient condition [6]. This condition states that a general steady state of a plasma
of constant density and incompressible flow parallel to B is linearly stable to small three-
dimensional perturbations if the flow is sub-Alfvénic (M2 < 1) and A � 0, where A is given
by (20) of [6]. Consequently, we restrict the study to parallel flows and set � = 1. First it is
noted that on the basis of Mercier expansions it turns out that the condition is never satisfied in
the vicinity of the magnetic axis (A < 0).4 This holds for generic two-dimensional equilibria
irrespective of the geometry. Also, for the pressure (20), the quantity A is independent of βf ,
as may be expected on physical grounds, because A contains dPs/du and not Ps itself. It is
recalled here that β = 0 when βf 	= 0. In the u-space for translationally symmetric equilibria,
A assumes the form

A = −g2

{
(j × ∇u) · (B · ∇)∇u +

1

2

dM2

du
(1 − M2)−1 |∇u|2

×
[
(1 − M2)−1/2∇u · ∇B2

2
+ g(1 − M2)−1 |∇u|2

]}
, (21)

where

g = (1 − M2)−1/2

(
dPs

du
− dM2

du

B2

2

)
, (22)

and B and j as given by (6) and (7). To calculate A analytically for the equilibria under
consideration we developed a code in Mathematica 6. The expressions obtained for both
peaked and flat Ps-profiles being lengthy are not given explicitly here except for the case of
quasistatic equilibria (equation (23)). The calculations led to the following conclusions.

(i) For quasistatic equilibria (M0 = 0) the quantity A assumes the concise form

A = ε(1 − ε2)[ε cosh(y) sin(x)2 + cos(x) sinh(y)2]

[ε cos(x) − cosh(y)]5
. (23)

Note that A becomes independent of β and Bz0. The condition is nowhere satisfied in the
island region except for one-dimensional configurations (ε = 0), point vortices (ε = 1),

4 Since the condition is sufficient when not satisfied (A < 0), it becomes indecisive.
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Figure 5. Profile of the quantity A (equation (21)) associated with the sufficient condition for
linear stability for a quasistatic equilibrium (M0 = 0). Except for the marginally stable points
y = 0 and y → ∞ the condition is nowhere else satisfied.
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Figure 6. Stabilization effect of flow: in the presence of flow the red (lighter) colored stable regions
appear in the diagram (a) where A � 0. The respective stable window can be seen in the profile of A

in (b).

the magnetic axes, the x-points and for y → ∞ for which A = 0. A profile of A is given
in figure 5.

(ii) The flow results in the formation of a stable region close to the magnetic axis in the
location of pressure islands. An example shown the sign of A on the poloidal plane is
presented in figure 6(a). The red (lighter) colored regions are stable (A � 0), while in
the blue (darker) colored region it holds A < 0. The whole area of figure 6(a) becomes
blue (darker) colored when M0 = 0.

(iii) The stable region broadens when the parameters M0, n and ε take larger values as can
be seen in figures 7(a)–(c), respectively. Note the sensitiveness of A in the region of
the stable window to the small variation of these parameters possibly related to the
nonlinearity; in particular, ε appears in the argument of the cat-eyes solution (15). These
results hold for both peaked- and flat-Ps equilibrium profiles. Unlikely, the stable region
is rather insensitive to the variation of β. An example is given in figure 7(d), where the
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Figure 7. Impact of the flow (a), flow shear (b), cat-eyes size (c) and thermal pressure (d) in
connection with a variation of the parameters M0, n and ε and β, respectively, on the flow caused
stable window associated with A � 0 for the equilibrium of figure 3(a).
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Figure 8. Combined stabilization effect of flow and Bz0: the curve (a) indicates a stabilizing
synergism of Bz0 and flow for the equilibrium of figure 3(a). A stronger synergism of this kind is
shown in (b) pertaining to a two-dimensional Harris-type equilibrium.

stable window persists (just getting slightly smaller) when β is increased by an order of
magnitude (from 0.02 to 0.2). Also, for point vortices (ε = 1) A becomes independent
of β irrespective of the value of M0.

(iv) Although for M0 = 0 the vacuum magnetic field Bz0 has no impact on A (equation (23)),
in combination with the flow, Bz0 can enhance the stable region. An example of this
synergetic effect is shown in figure 8(a). Another example of such a strong synergism
can be seen in figure 8(b) for a two-dimensional Harris-type equilibrium (β = 1, ε 	= 0).
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In this case, while the flow itself cannot make A positive, together with Bz0 it results in
the formation of the stable window.

5. Summary and conclusions

We have extended the ‘cat-eyes’ solution of the hydrodynamic equilibrium equation to
cover MHD magnetically confined plasmas with incompressible flow. The extension was
accomplished smoothly because the pertinent generalized Grad–Shafranov equation can be
transformed to a form identical to that of the hydrodynamic equation (equation (7)). Velocity,
magnetic field and current density of the extended equilibrium share the same surfaces;
therefore, the vortices can be viewed as magnetic islands with plasma flow while the magnetic
field does not affect the vortex shape. Also, to be compatible with the cat-eyes solution,
the axial magnetic field, Bz(u), and the quasistatic pressure, Ps(u), must satisfy relation
(16). The equilibrium is generic enough because four surface quantities, i.e. the density, the
electrostatic potential, the poloidal Alfvén Mach function [M(u)] and either Bz(u) or Ps(u)

remain free. Generalized Harris or force free-type equilibria can be derived as particular cases.
Furthermore, the flow caused departure of the pressure surfaces from the magnetic surfaces
has been examined by assigning the functions Bz(u), Ps(u) and M(u) (equations (17)–(19)).
The equilibrium has the following seven free parameters: the island length (L), the density �0

on the island axis, the external axial magnetic field (Bz0), a parameter ε determining the island
size, a local ratio of the thermal pressure to the magnetic pressure (β or βf in connection with
peaked and flat profiles of Ps, respectively), the Mach number M0 on the island axis and a
velocity-shear-related parameter n. It turns out that, unlike linear equilibria, the flow strongly
affects the pressure surface topology by forming pressure islands on the poloidal plane within
the cat eyes, even for flows of laboratory fusion concern.

For parallel flows and constant density, the linear stability of the equilibria constructed has
been examined by means of a recent sufficient condition guaranteeing stability when the flow
is sub-Alfvénic and an equilibrium dependent quantity A (equation (21)) is nonnegative. By
symbolic computation of A for a broad variation of the parameters ε, β,M0 and n, we came to
the following conclusions. The flow can result in the formation of a stable region, close to the
magnetic axis in the location of pressure islands, thus indicating a correlation of stabilization
with nonlinearity. The stable region can appear for fusion relevant values of M0 on the order
of 0.01 when the velocity shear becomes appropriately large (n ≈ 10 for ε = 0.2), enhances
as n becomes larger and persists for a large variation of β (from 0.02 to 0.2). Also, the broader
the stable region the larger the island size (larger ε). A combination of velocity and Bz0 can
have synergetic stabilizing effects by enlarging the stable region.

In conclusion, the present study has shown significant stabilizing effects of the flow and
flow shear in connection with nonlinearity and formation of equilibrium pressure islands. The
study can be extended to several directions. Firstly, since four surface functions remain free
in equilibrium together with many free parameters, there may be a possibility of stability
optimization. Secondly, the problem could be examined in cylindrical and axisymmetric
geometries in connection with the magnetic field curvature and toroidicity. Note that in the
presence of toroidicity non-parallel flows have a stronger impact on equilibrium because, in
addition to the pressure, they result in a deviation of the current density surfaces from the
magnetic surfaces. Although in non-plane geometries nonlinear solutions in general should be
constructed numerically, it is interesting to pursue analytic translationally symmetric solutions
in cylindrical geometry as a next step to the cat-eyes solution. At last, it is recalled that the
search for necessary and sufficient stability conditions with flow remains a tough problem as
already known in the framework of hydrodynamics.
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